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Abstract The structure of assemblages may be determined by interspecific interactions

or environmental factors (e.g. competition and habitat filtering). Since communication

between conspecific and heterospecific affects fitness of individuals, habitat characteristics

that prevent communication could determine habitat use and co-occurrence of species.

However, at present there are few studies, most with birds, testing the relationship between

sensory ecology and community ecology. Abiotic noise on streams could impede the

detection and decoding of auditory signals by receivers through a process named auditory

masking. Therefore, we tested the role of abiotic noise on streams as a habitat charac-

teristic influencing the phenotypic and phylogenetic structure of Neotropical anuran

assemblages. We tested this hypothesis using data of male body size, call frequency,

calling place (alongside and away from streams), and phylogenetic relationship of 110 and

38 anuran species at regional and local scale, respectively. After we found quantitative

evidence suggesting that call frequency and body size are conserved phenotypic traits, we

found that assemblages alongside streams exhibit both phenotypic and phylogenetic

clustering, while assemblages away from streams exhibit both phenotypic and phyloge-

netic overdispersion. These results offer quantitative evidence suggesting a role of noise on

streams promoting a process of habitat filtering and affecting the structure of anuran

assemblages alongside streams both at Neotropical and local scale. This is the first study

using modern phylogenetic comparative metrics for covering potential causes of pheno-

typic and phylogenetic structure of anuran assemblages, and one of the few testing a link

between community ecology and the evolutionary biology of acoustic communication to

understand the processes mediating species co-occurrence in vertebrates.
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Introduction

One of the most intriguing questions in evolutionary ecology is what process determines

the structure and species composition of assemblages (Cornell and Lawton 1992; Ricklefs

and Schluter 1994; Mittelbach 2012). Because phylogenetically related species tend to be

similar in morphology, behavior and ecology (Kozak and Wiens 2006), traditionally it has

been expected that recently diverged taxa do not co-occur unless they accomplish a

minimum degree of dissimilarity (limiting similarity hypothesis; MacArthur and Levins

1967; Diamond and Cody 1975). Hence, competition has been considered the main driver

of the ecological dissimilarity of co-occurring species (Darwin 1859; MacArthur 1958;

Pain 1974; Schoener 1974; Lubchienco 1978). Another point of view claims that envi-

ronmental factors can restrict the persistence of species that do not match a specific optimal

phenotype; that is, environmental factors (i.e. filters) select species with particular traits

from a species regional pool, but exclude those with traits which deviate from that optimal

trait (habitat filtering hypothesis; Keddy 1992; Forrest 1994). Alternatively, stochastic

forces also have been suggested to explain co-occurrence of species (Webb et al. 2002;

Hubbell 2006).

A phenotypic trait can evolve in a conserved or convergent way, and this evolution

pattern may influence the phylogenetic structure of the assemblages (Webb et al. 2002).

Because interspecific competition limits the ecological similarity of co-occurring species,

for phylogenetically conserved phenotypes an overdispersed phylogenetic pattern is

expected; conversely, if there is habitat filtering, a phylogenetic clustering pattern would be

expected. For converged phenotypes, it is expected a phylogenetic random pattern and a

phenotypic overdispersed pattern if competition is the main process influencing the co-

occurring species; on the contrary, if habitat filtering is the main process influencing co-

occurrence of species, a phylogenetic overdispersion and a phenotypic clustered pattern

would have arisen (see Vamosi et al. 2009; Emerson and Gillespie 2008; and Pausas and

Verdú 2010 for reviews). Recent studies using modern theories and molecular phyloge-

netic methods for addressing the causes of assemblage structure of animals and plants have

found support for both limiting similarity and habitat filtering hypotheses (Kraft et al.

2007; Riedinger et al. 2013; Gómez et al. 2010; Maire et al. 2012; Spasojevic and Suding

2012; Luza et al. 2015). Nevertheless, given the high diversity of phenotypic traits and

natural history characteristics of species, and the possibility that interspecific competition

produces a phenotypic and phylogenetic pattern similar to that expected by habitat filtering

(Cahill et al. 2008; Mayfield and Levine 2010), more studies are necessary to really

understand the relationship between ecology, evolutionary biology, and co-occurrence of

species.

Communication between individuals affects life history, reproduction, and thereby fit-

ness; therefore, habitat characteristics that prevent communication could determine habitat

use, and hence, the phenotypic and phylogenetic structure of assemblages. Abiotic noise

(e.g. noise on streams, traffic noise on roads) can impede the detection and decoding of

auditory signals by receivers through a process named auditory masking (Brumm and

Slabbekoorn 2005). The level of auditory masking is expected to be higher in areas near

the noise source because intensity of sound reduces with distance (Brumm and Slabbe-

koorn 2005; Vargas-Salinas et al. 2014). Moreover, since most energy of abiotic noise is

concentrated at relatively low frequencies (Dubois and Martens 1984; Cunnington and

Fahrig 2010), noise produced by flowing water on streams and traffic on roads has been

proposed multiple times as a selective force promoting the evolution of high frequency
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calls in animals using auditory signals for communicating (Slabbekoorn and Peet 2003;

Narins et al. 2004; Feng et al. 2006; Boeckle et al. 2009; Parris et al. 2009; Römer 2013;

Vargas-Salinas and Amézquita 2013). If the species do not evolve an adaptation or exhibit

a behavioural adjustment that increases signal-to-noise ratio of auditory signals they are

filtered out from the noisy habitat (Francis et al. 2011).

Despite the fundamental role that animal communication can have in shaping the

structure and composition of animal assemblages, little empirical work has tested this

relationship (Amézquita et al. 2011; Cardoso 2014; Francis et al. 2011; Francis 2015).

Further, most of these studies use birds as model system, but differences in natural history

and communicating behavior (e.g. learning and plasticity in acoustic signals) between

animal groups, restrict the extrapolation of accumulated evidence. Anurans offer an

excellent opportunity for expanding our knowledge about the role of abiotic noise as a

habitat factor influencing the structure of assemblages; they are relatively abundant, most

species use auditory signals for communication, and many breed and call away from

streams while others do so alongside streams (Duellman and Trueb 1994; Wells 2007).

Moreover, there is evidence suggesting that in some species high frequency calls have

evolved as an adaptation that allows acoustic communication alongside streams (Feng

et al. 2006; Arch et al. 2008; Vargas-Salinas and Amézquita 2013), but this phenomenon

might be highly constrained in most species due to strong pleiotropic connection between

call frequency and body size (Gerhardt and Huber 2002; Wells 2007). Therefore, it is

possible that the masking of auditory signals by abiotic noise could be filtering species in

areas alongside streams instead of promoting the evolution of high call frequency in many

anuran species, as reported for birds in habitat dominated by anthropogenic noise (Francis

et al. 2011; Francis 2015).

Vargas-Salinas and Amézquita (2014) suggest that habitat filtering could explain why

anuran species breeding alongside streams utter calls at higher frequencies and are smaller

in body size compared to species breeding away from streams; however, these authors did

not test this hypothesis. Here we used the framework by Webb et al. (2002) and modern

phylogenetic comparative analysis (see Pearse et al. 2014) to quantify the importance of

ambient sounds shaping the phenotypic and phylogenetic structure of anuran assemblages.

In addition, since patterns arising from ecological studies are necessarily constrained by the

spatial scale of the analyses (Wiens 1989; Swenson et al. 2006; Emerson and Gillespie

2008), we tested the habitat filtering hypothesis at two levels: at Neotropical and local

scale. It is expected that at large scale the role of habitat filtering is more detectable than at

local scale (Swenson et al. 2006; Emerson and Gillespie 2008). At former scales the high

habitat heterogeneity can promote coexistence of species with similar phenotypes and

environmental requirements across contrasting habitats while at the latter scales, the

habitat homogeneity should promote strong interspecific competition that can limit the co-

occurrence of phenotypically similar species (Weiher and Keddy 1995; Cavender-Bares

et al. 2006; Swenson et al. 2007). Nevertheless, not all habitat characteristics change at the

same spatial scale, which can explain mixed results in literature concerning the relative

role of habitat filtering and competition (Gómez et al. 2010; Luza et al. 2015).

For conserved traits in which the habitat filtering hypothesis is right, we expect to find

(1) a phylogenetic and phenotypic (e.g. body size, call frequency) clustering pattern in the

assemblage of anuran species calling and breeding alongside streams, and (2) a phylo-

genetic and phenotypic overdispersion in anuran species calling and breeding away from

streams (Fig. 1a; but see Mayfield and Levine 2010). If the structure of assemblage is

influenced mainly by interspecific competition we expect to find a phylogenetic and

phenotypic overdispersed pattern both in assemblages alongside streams and away from
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steams. Other phenotypic and phylogenetic patterns are expected for convergent traits

(Fig. 1b). To test the previous predictions we first analyzed whether phenotypic traits

exhibit phylogenetic signal, which would offer evidence about the trait evolution pattern

Fig. 1 Alternative hypothesis of the phenotypic and phylogenetic structure of anuran assemblage as a
consequence of the dominant assembly process (habitat filtering versus limiting similarity) for a conserved
(a) and a convergent (b) anuran phenotypic trait. Size of the frog silhouettes represent a quantitative trait
(e.g. male body size) which is inversely correlated with dominant call frequency. Gray boxes represent noisy
habitats characterized by intense abiotic noise at low frequencies (alongside streams); white boxes represent
less noisy habitats (away from streams). Habitat filtering would allow the persistence of species whose
individuals utter auditory signals at high frequency (and the concomitant small body size) alongside streams.
For assemblages away from streams would be expected that limiting similarity processes prevent similar
species in call frequency and body size co-occurring. Figure adapted from Pausas and Verdú (2010)
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(conserved vs convergent). Later, we estimated metrics that allow us to contrast alternative

phylogenetic and phenotypic pattern (i.e. clustering, overdispersion). In this study we make

a link between sensory ecology and community ecology, two research disciplines that have

traditionally developed apart from each other.

Materials and methods

To test our hypotheses at a Neotropical scale, we used the topology and database published

by Vargas-Salinas and Amézquita (2014) which was based on Pyron and Wiens (2011)

phylogenetic analysis and literature. To test our hypotheses at a smaller scale (hereafter

‘‘local scale’’) we used the genetic sequences used by Crawford et al. (2010) for an

amphibian assemblage in the Natural Reserve El Copé, at Central Panamá. We used

sequences of two mitochondrial genes, the ribosomal subunit 16S and the Cytochrome

Oxidase I (16S, COI) corresponding to 58 anuran species from GeneBank (Table 1). The

sequence alignment was performed with MUSCLE (Edgars 2004) in MEGA 6 (Tamura

et al. 2013), and made a matrix of concatenated alienated genes. Like Crawford et al.

(2010), for the 16S gene we excluded sites with gaps plus one additional base on either side

of gaps with a length greater than 1 bp. Then, we ran a maximum likelihood (ML) analysis

in the graphical interface of RAxML (Stamatakis 2006; Silvestro and Michalak 2012). The

phylogenetic analysis was performed using four data partitions as suggested by Crawford

et al. (2010) and the GTR ? GAMMA (=GTR ? C) model of nucleotide substitution used

for all data partitions. We used 1000 bootstraps for searching the best topology. Both the

tree at Neotropical and local scale were converted into an ultrametric tree using semi-

parametric method based on penalized likelihood (Sanderson 2002) implemented in the

package APE (Paradis et al. 2004) for R (R Development Core Team 2015).

Later, we reviewed the literature for the natural history information for each species.

Specifically, we looked for male body size (SVL, Snout-to-vent length), dominant fre-

quency of the advertisement call (hereafter ‘‘call frequency’’), and breeding habitat

(streams, away from streams). As possible, we used average data on male body size and

call frequency calculated from several individuals. Where the published descriptions

included ranges rather than average values, we used the range midpoint as an approxi-

mation to the mean. Breeding habitat was categorised in agreement to the expected level of

natural abiotic noise: noisy (alongside streams) and less noisy (away from streams)

habitats. To test whether our species assemblage at local scale exhibit similar patterns that

those found at Neotropical scale by Vargas-Salinas and Amézquita (2014), we used similar

analysis to those performed by them: a t-tests to compare call frequency and male body

size between species that breed alongside streams and away from streams. We also tested

for an inverse relationship between male body size and call frequency with a linear

regression analysis. Species cannot be considered as independent statistical units because

they share ancestry (Felsenstein 1985); therefore, we compared call frequency and male

body size between habitats (streams, away streams) with a phylogenetic ANOVA (Garland

et al. 1993). The relationship between male body size and call frequency after controlling

for the phylogenetic relationship of species was tested using Phylogenetic Generalized

Least Squares (Freckleton et al. 2002).

Phylogenetic signal is a common phenomenon in the phenotypic traits of animals

(Blomberg et al. 2003; Hof et al. 2010) and is arguably present in phenotypic traits such as

call frequency and body size in anurans (Erdtmann and Amézquita 2009). Nevertheless,
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áñ
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there is evidence suggesting that phylogenetic signal is not ubiquitous (Losos 2008).

Therefore, in our study we evaluated whether male body size and call frequency exhibit

phylogenetic signal, which would suggest a trait is conserved, using the statistic K

(Blomberg et al. 2003) performed in the R package Picante (Kembel et al. 2010). For

testing phylogenetic signal and phenotypic structure of assemblages (see below) we used

transformed values (Ln) of male body size and call frequency according to suggestion by

Gotelli and Graves (1996; cited by Gómez et al. 2010). K values vary continuously from

zero to infinity. K values greater than 1 indicate a strong phylogenetic signal (i.e. con-

served trait), K values equal to 1 indicate a Brownian motion process which implies some

degree of phylogenetic signal and conservatism, K values less than 1 indicate that the

evolution of the trait is labile, and K values equal to 0 indicate that trait evolution pattern is

random or convergent (Blomberg et al. 2003; Gómez et al. 2010, Kraft et al. 2007; Revell

et al. 2008).

To test for the phylogenetic assemblage structure we obtain the metric standardized

effect size (SES) of mean pairwise phylogenetic distance (SESmpd) in the R package

Picante. The SESmpd was calculated from a comparison between observed mean pairwise

phylogenetic distance (MPD) and an expected pairwise phylogenetic distance. The latter

was obtained from randomization of the anuran assemblage (Webb et al. 2002) using 1000

random assemblages under the null model of sample pool (Kembel et al. 2010; Hardy

2008). From this randomization process we obtain the p value (a = 0.05) derived from

SESmpd calculations (for more details see Kembel et al. 2010). A negative value of SESmpd

indicates phylogenetic clustering, while a positive value indicates phylogenetic overdis-

persion; this index is similar to the NRI index proposed by Webb et al. (2002, 2008).

The phenotypic structure of assemblages was tested similarly to the phylogenetic

assemblage (see above), but the phylogenetic distance matrix is replaced by a trait distance

matrix for both call frequency and male body size (calculating the Euclidian distance).

Then, we calculated the MPD and SESmpd for each phenotypic trait, for each anuran

assemblage, and for both scales of analysis. The null model (sample pool) was calculated

using 1000 randomizations. Similar to the phylogenetic structure of assemblages, a neg-

ative value of SESmpd indicates phenotypic clustering while a positive value indicates

phenotypic overdispersion. The p value was derived from SESmpd calculations (Kembel

2009; Kembel et al. 2010).

Results

The 110 anuran species used at Neotropical scale belong to five families (11 species in

Bufonidae, 9 in Centrolenidae, 34 in Dendrobatidae, 51 in Hylidae, and 5 in Ranidae); see

Vargas-Salinas and Amézquita (2013) for phenotypic data and comparative analyses of

those species. The compiled data for the anuran assemblage at El Copé, Panama (local

scale) about male body size and breeding habitat for 58 anurans is presented in Table 1.

Call frequency information was available only for 38 taxa; in phylogenetic analyses we

only used these latter species. Those 38 species belongs to Bufonidae (3 species), Cen-

trolenidae (8), Craugastoridae (6), Dendrobatidae (6), Hemiphractidae (1), Hylidae (8),

Leptodactylidae (5), and Ranidae (1); 16 of them breed alongside streams and 22 breed

away from streams (Fig. 2). Call frequency was on average 2.16 kHz higher in streamside

breeders than in other species (t = -3.73, df = 36, p = 0.001, Fig. 3a). Moreover,

smaller anurans are less variable in body size than anurans that breed away from streams
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(Levene test for homogeneity of variances = 10.995, p = 0.002; t = 2.855, df = 25.17,

p = 0.018; Fig. 3b). Species whose males are large in body size produce calls with lower

dominant frequency than those species whose males have smaller body size (R2 = 0.42,

b = -0.53, F = 18.96, df = 27, p[ 0.001; Fig. 3c). A similar tendency was obtained

after controlling by the phylogenetic relationship between species (call frequency vs

calling site: phylogenetic p value = 0.0005; male body size vs calling site: phylogenetic

p value = 0.018; relationship male body size-call frequency: R2 = 0.55, F = 45.50,

df = 36, p\ 0.001).

There was phylogenetic signal for body size and call frequency at both spatial scale

analyses; however, the K values suggest that at Neotropical scale the evolution pattern of

those traits is labile whist at local scale is highly conserved (Table 2). Consistent with our

hypothesis, anuran assemblages alongside streams are more related phylogenetically than

Fig. 2 Phylogenetic analysis of mitochondrial genes (16S, COI) showing relationships between 38 anuran
species used for analysis at local scale (El Copé, Panamá). The topology shows the best tree of the maximum
likelihood analysis of mtDNA for 16 anuran species breeding alongside streams and 22 species breeding
away from streams. Sequences from GenBank (see Table 1 for accession numbers). Anuran silhouettes
indicate calling habitat (Black silhouettes: noisy habitats alongside streams, Gray silhouettes: away from
streams)
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expected by chance, while anuran assemblages at areas away from streams are less phy-

logenetically related than expected by chance. These two results were consistent for both

Neotropical and local assemblages (Table 3). Likewise, at both scales, the male body size

Fig. 3 Analyses for anuran assemblages at local scale comparing dominant call frequency (a) and body size
(b) of males between 16 anuran species that breed alongside streams and 22 that breed away from streams
(total = 38 species), and the relationship between body size and call frequency (c). Box plots (a, b) show
25th and 75th percentiles (box), median (line within box), and 5th and 95th percentiles (whiskers). Gray and
black filled dots at c indicate species calling away and alongside from streams, respectively. Similar results
are found after controlling by the phylogenetic relationship between species (see text)

Table 2 Test of phylogenetic signal for body size and call frequency for anuran assemblages at two scales
of analysis (Neotropical and local)

Scale of analysis Trait K value p value

Neotropical Male body size 0.9283379 0.001*

Call Frequency 0.7036232 0.001*

Local Male body size 1.431717 0.001*

Call Frequency 1.670593 0.001*

K-value according to Blomberg et al. (2003)

* Indicates a phylogenetic signal
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and the call frequency exhibit phenotypic clustering in assemblages breeding alongside

streams, whilst they are overdispersed for assemblages away from streams (Table 3).

Discussion

We found evidence supporting the hypothesis that noise on streams promotes a process of

habitat filtering upon species with low call frequencies and the concomitant larger body

size (Fig. 3; Table 3). In this way, noise on streams could have major role in determining

the phylogenetic and phenotypic structure of anuran assemblages (but see next paragraph).

Abiotic noise on streams is characterized by a high intensity at low frequencies and a low

intensity at higher frequencies (Dubois and Martens 1984; Schwartz and Bee 2013). Hence,

acoustic communication of species whose individuals utter auditory signals at low fre-

quencies is especially difficult because signal masking by noise (Hödl and Amézquita

2001; Brumm and Slabbekoorn 2005). As a consequence, the phenotype favored by the

noisy conditions alongside streams may be high call frequencies and small body size

(phenotypic clustered pattern). Furthermore, it is expected that the habitat filtering effect

imposed by noise on streams reflects in multiple aspects of species’ natural history because

body size in anurans is related to size and type of diet, fecundity, physical strength and

other traits related to fitness (Duellman and Trueb 1994; Wells 2007).

A labile evolution pattern for call frequency and body size at Neotropical scale

(Table 2) does not discard conservatism of these traits; rather, K-values less than unity (i.e.

deviation of simple Brownian motion) may be attributed to adaptations to a particular

environment factor in some species but not others (Blomberg and Garland 2002; Blomberg

et al. 2003). Indeed, there is empirical evidence suggesting that some species calling

alongside streams have evolved high call frequencies (and usually small body size) as an

adaptation to noise on streams (Feng et al. 2006; Arch et al. 2008; Grafe et al. 2012;

Vargas-Salinas and Amézquita 2013; Vargas-Salinas et al. 2014). This adaptation however,

may have been constrained in most species by the effects of body size and selection acting

in diverse contexts (Gerhardt and Huber 2002; Wells 2007). On the other hand, our

analyses at local scale suggest that call frequency and male body size are conserved

phenotypic traits; similar conclusions have been reached by Gerhardt and Huber (2002),

and Erdtmann and Amézquita (2009). The fact that possible adaptations promoted by

abiotic noise on streams may be detected at one scale but not another could be

attributable to differences in the number of species included in the analysis of phylogenetic

signal (Krasnov et al. 2011; Losos 2008). We believe the difference in K values between

Neotropical and local scales do not discard the major role of habitat filtering in structuring

Neotropical anuran assemblages, but highlight the role of selective process acting in some

species and the importance of studies at different scales in community ecology.

We showed a phylogenetic and phenotypic pattern expected under the hypothesis of

habitat filtering for assemblages alongside streams both at Neotropical and local scale.

Predictions regarding habitat filtering are often assumed to operate at larger scales, but

over-dispersion may dominate at local scales due to competition (but see Gómez et al.

2010; Luza et al. 2015). Researches usually have tested broadly distributed environmental

factors such as temperature, precipitation gradients, winds, or nutrients in soils (e.g. Maire

et al. 2012; Lososová et al. 2015; Lanier et al. 2013; Graham et al. 2009) while we tested

noise on streams, a habitat feature that rapidly decreases in intensity as it propagates from

the source (Brumm and Slabbekoorn 2005; Vargas-Salinas et al. 2014). In other words, the
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acoustic ambient can change drastically in just few meters and hence promote a turnover of

species at small spatial scales as a consequence of differential signal masking levels. In

fact, even along an individual stream can be a heterogeneous acoustic environment

depending of landscape topography, waterfall presence, kind of substrates, or stream size

(Vasudevan et al. 2006; Keller et al. 2009). It is possible that the variability of noise

intensity along a stream influences the strength of habitat filtering process acting upon call

frequency and anuran body size at micro-spatial scale, but this hypothesis deserves further

analysis. Unfortunately, data about ambient sound level and other specific calling site

attributes (e.g. height) are absent for most anuran species (Goutte et al. 2013).

We do not discard the importance of competition influencing the co-occurrence of

species in our study system. In fact, there is abundant empirical evidence about intra and

interspecific competition for communication channels in anurans (see review in Gerhardt

and Huber 2002; Wells 2007) and other animals (Kirschel et al. 2009; Brumm 2006, 2013).

We also agree that for conserved traits, competition could produce a phenotypic and

phylogenetic pattern similar to that expected under the habitat filtering hypothesis (May-

field and Levine 2010). However, we do not regard as plausible that our results for

assemblages alongside streams can be the result of competition instead of habitat filtering

because several reasons which are not mutually exclusive. First, contrary to the example

(in plants) identified by Mayfield and Levine (2010) to support their arguments, an increase

in call frequency implies an evolutionary change in body size for most anurans, and a

potential reduction in mating success because signals at high frequency attenuate faster

than signals at low frequencies (Gerhardt and Huber 2002). Second, in spite of the reduced

band of frequency channels available for communicating because of abiotic noise, anuran

species alongside streams can still coexist communicating if they partitioning the resource

at finer frequency bands, using different calling perches, being active at different times,

and using complementary sensory modalities (Amézquita et al. 2006; Schwartz and Bee

2013; Starnberger et al. 2014a, b). Third, our results are consistent at both scales of

analysis. Summing up, the evidence suggest that competing species calling alongside

streams are those that have previously overcome the filter effect of abiotic noise (i.e. high

call frequency and small body size).

Several factors might restrict the comparability of information among the species

included in our data matrix; for instance, differences in temperature at time of call

recording, and among-sites differences in habitat vegetative physical structure (Vargas-

Salinas and Amézquita 2013). However, those authors used published empirical evidence

(e.g. Gerhardt 1978; Sullivan 1982; Zimmerman 1983; Bosh and De la Riva 2004) to argue

that differences on call frequency and body size between assemblages alongside streams

and away streams are real and not artefactual results caused by biased data. For our local

scale analysis we used phenotypic trait information from populations other than the study

site (El Copé, Panamá), and it is known that several anuran species exhibit geographic

variation in body size and call frequency (e.g. Narins and Smith 1986; Ryan and Wil-

czynski 1991). Nevertheless, we consider it very unlikely that traits of species with geo-

graphic variation were recorded consistently in a way that produced the clustered

phenotypic patterns we found at local scale. On the other hand, insect choruses produce a

loud noise background that can mask auditory signals of vertebrates and hence, influence

the frequency channels that birds and anurans use for communicating (Ryan and Brenowitz

1985; Wong et al. 2009). Given that insects produce sounds at relative high frequency

(Ryan and Brenowitz 1985; Gerhardt and Huber 2002), similar patterns to those presented

here could result if small-bodied and high frequency frogs are excluded from environments

away from streams. We discard this possibility because a loud acoustic environment by
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insects can be present both away and alongside streams, and because not necessarily the

spectral features of the soundscape produced by insects must be equal in space and time

(Lampe et al. 2012; Römer 2013).

Habitat filtering and its effect in the phylogenetic and/or phenotypic structure of

community assemblages has been studied in plants (Maire et al. 2012; Spasojevic and

Suding 2012; Lososová et al. 2015) and attributed to habitat characteristics such as dis-

turbance regimens, winds, temperature and nutrients availability. The effect of habitat

characteristics such as vegetation structure, climate, and anthropogenic disturbance in

animal assemblages has been tested from similar approaches with lizards (Lanier et al.

2013), birds (Graham et al. 2009; Gómez et al. 2010), small mammals (Riedinger et al.

2013; Luza et al. 2015), fishes (Blanchet et al. 2014; Starnberger et al. 2014a, b), but ours is

the first study of phenotypic and phylogenetic structure of anuran assemblages. With

respect to abiotic noise, there is evidence suggesting that this kind of noise is an important

habitat characteristic filtering some birds and frogs species but not others (Francis et al.

2011; Proppe et al. 2013; Vargas-Salinas and Amézquita 2013). However, those studies

about the effect of abiotic noise did not test the effect on the phylogenetic structure of

assemblages using modern phylogenetic metrics. Hence, our results point out a link

between community ecology and the evolutionary biology of acoustic communication to

understand the processes mediating species coexistence in Neotropical anuran assem-

blages. Further studies in phylogenetic assemblage structure should test the potential

effects of metacommunity dynamics, speciation, extinction, adaptation, dispersion and

even neutral processes (Emerson and Gillespie 2008; Mittelbach and Schemske 2015).
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